The Azomethine Ylide Route to Amine C–H Functionalization: Redox-Versions of Classic Reactions and a Pathway to New Transformations

نویسنده

  • Daniel Seidel
چکیده

Conspectus Redox-neutral methods for the functionalization of amine α-C-H bonds are inherently efficient because they avoid external oxidants and reductants and often do not generate unwanted byproducts. However, most of the current methods for amine α-C-H bond functionalization are oxidative in nature. While the most efficient variants utilize atmospheric oxygen as the terminal oxidant, many such transformations require the use of expensive or toxic oxidants, often coupled with the need for transition metal catalysts. Redox-neutral amine α-functionalizations that involve intramolecular hydride transfer steps provide viable alternatives to certain oxidative reactions. These processes have been known for some time and are particularly well suited for tertiary amine substrates. A mechanistically distinct strategy for secondary amines has emerged only recently, despite sharing common features with a range of classic organic transformations. Among those are such widely used reactions as the Strecker, Mannich, Pictet-Spengler, and Kabachnik-Fields reactions, Friedel-Crafts alkylations, and iminium alkynylations. In these classic processes, condensation of a secondary amine with an aldehyde (or a ketone) typically leads to the formation of an intermediate iminium ion, which is subsequently attacked by a nucleophile. The corresponding redox-versions of these transformations utilize identical starting materials but incorporate an isomerization step that enables α-C-H bond functionalization. Intramolecular versions of these reactions include redox-neutral amine α-amination, α-oxygenation, and α-sulfenylation. In all cases, a reductive N-alkylation is effectively combined with an oxidative α-functionalization, generating water as the only byproduct. Reactions are promoted by simple carboxylic acids and in some cases require no additives. Azomethine ylides, dipolar species whose usage is predominantly in [3 + 2] cycloadditions and other pericyclic processes, have been identified as common intermediates. Extension of this chemistry to amine α,β-difunctionalization has been shown to be possible by way of converting the intermediate azomethine ylides into transient enamines. This Account details the evolution of this general strategy and the progress made to date. Further included is a discussion of related decarboxylative reactions and transformations that result in the redox-neutral aromatization of (partially) saturated cyclic amines. These processes also involve azomethine ylides, reactive intermediates that appear to be far more prevalent in condensation chemistry of amines and carbonyl compounds than previously considered. In contrast, as exemplified by some redox transformations that have been studied in greater detail, iminium ions are not necessarily involved in all amine/aldehyde condensation reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Three-Component 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide for Synthesis of New Bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) Derivatives

The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry. A comparative study of the synthesis of new bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) ring systems by the cycloaddition of azomethine ylides generated by a decarboxylative route from sarc...

متن کامل

A Three-Component 1,3-Dipolar Cycloaddition Reaction of Azomethine Ylide for Synthesis of New Bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) Derivatives

The development of multicomponent reactions (MCRs) designed to produce elaborate biologically active compounds has become an important area of research in organic, combinatorial, and medicinal chemistry. A comparative study of the synthesis of new bis-spiro-oxindolo(pyrrolizidines/pyrrolidines) ring systems by the cycloaddition of azomethine ylides generated by a decarboxylative route from sarc...

متن کامل

Bifunctional AgOAc-catalyzed asymmetric [3 + 2] cycloaddition of azomethine ylides.

[reaction: see text] A bifunctional AgOAc-catalyzed asymmetric cycloaddition of azomethine ylides with electronic-deficient alkenes was developed using ferrocenyloxazoline-derived N,P ligands. The reactive metal-bound azomethine ylide dipole is formed by the deprotonation with acetate, and extra base is not necessary. The reactions proceed with high enantioselectivity. This method provides an e...

متن کامل

A Route to the C,D,E Ring System of the Aspidosperma Alkaloids

A short synthetic sequence leading to the formation of the C,D,E-ring subunit of the Aspidosperma alkaloids is reported. This route is based on a ring fragmentation/intramolecular azomethine ylide 1,3-dipolar cycloaddition reaction sequence that gives the desired tricyclic product as a single diastereomer. A γ-amino-β-hydroxy-α-diazo carbonyl compound is shown to fragment in the presence of a L...

متن کامل

Intramolecular [3 + 2]-Cycloadditions of Azomethine Ylides Derived from Secondary Amines via Redox-Neutral C–H Functionalization

Azomethine ylides are accessed under mild conditions via benzoic acid catalyzed condensations of 1,2,3,4-tetrahydroisoquinolines or tryptolines with aldehydes bearing a pendent dipolarophile. These intermediates undergo intramolecular [3 + 2]-cycloadditions in a highly diastereoselective fashion to form polycyclic amines with four new stereogenic centers. Challenging substrates such as piperidi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015